欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Applications of fixed point theory to extended Nash equilibriums of nonmonetized noncooperative game
ISSN号:1687-1812
期刊名称:Fixed Point Theory and Applications
时间:2013
页码:1-13
相关项目:神经网络的代数构造特征和可算性
作者:
Xie L. S.|Li J. L.|Wen C. F.|
同期刊论文项目
神经网络的代数构造特征和可算性
期刊论文 36
同项目期刊论文
The computation of the inverse of block-wise centrosymmetric matrices
Order-clusered fixed point theorems on chain-complete preordered sets and their applications to exte
求分块鳞状因子循环矩阵的一种快速算法
A note on neural networks for optimal approximation of continuous function in R^{d}
Widths of embeddings in weighted function spaces
各向异性Hardy 空间上一类奇异积分算子
Neural networks for optimal approximation of continuous funcitons on the unit sphere
Applications of order-clustered fixed point theorems to generalized saddle point problems and preord
Simultaneous approximation by combinations of Bernstein-Kantorovich operators
On the logarithms of circulant matrices
Vector and ordered variational inequalities and applications to order-optimization on Banach lattice
Gelfand and Kolmogorov numbers of Sobolev embeddings of weighted function spaces
An optimal method for data clustering
Widths of embeddings of 2-microlocal Besov spaces
s-numbers of compact embeddings of function spaces on quasi-bounded domains
The existence of generalized Nash equilibria of strategic games with partially ordered preferences
Some s-numbers of embeddings in function spaces with polynomial weights
The properties and iterative algorithms of circulant matrices
Volume of support for multivariate continuous refinable functions
Neural Networks for Optimal Approximation of Continuous Functions on the Unit Sphere
Some results on certain generalized circulant matrices
前馈网络的一种高精度鲁棒在线贯序学习算法
On the logarithms of matrices with central symmetry
各向异性Hardy空间上一类奇异积分算子
几类循环矩阵的对数矩阵及其计算
一种距离边界合成少数类过采样技术
关于不定方程x2+4n=y13(n=4,5,6)的整数解
关于不定方程x^2+4^n=^y15(n=1,2,3)的整数解
求分块鳞状因子循环矩阵逆矩阵的一种快速算法
在L^p中一类近似插值神经网络的逼近误差
神经网络对Rd上连续函数最佳逼近的一个注记
一般有界Sigmoidal函数神经网络的插值与逼近