设A为一个n×n阶实扩张矩阵,引入了一类奇异积分核,并得到由此导出的算子在伴随于伸缩A的各向异性Hardy空间的有界性.
Let A be an n × n real expansive matrix. The authors define some singular integral kernels and study the boundedness of the operators induced by these kernels on anisotropic Hardy spaces associated with A.