位置:成果数据库 > 期刊 > 期刊详情页
一种数据域描述的加权支持向量回归算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西南交通大学经济管理学院,成都610031, [2]西南交通大学智能控制开发中心,成都610031
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60875034);高校博士点基金(the China Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060613007).
作者: 吴水亭[1,2]
中文摘要:

针对支持向量回归中由于噪声和孤立点带来的过拟合问题,提出了一种基于支持向量数据域描述的加权系数函数模型,根据样本到特征空间最小包含超球球心的距离来确定其加权系数。将提出的加权系数模型用于加权支持向量回归中,一维数据集仿真表明,提出的模型可以有效减小回归误差,提高支持向量回归算法的抗噪声能力。

英文摘要:

To overcome the problem of over-fitted caused by noises and outliers in support vector regress(SVR),weighted coefficient model based on support vector data description(SVDD) is used in this paper.The weighted coefficient value to each input sample is confirmed according to its distance to the center of the smallest enclosing hyper-sphere in the feature space.The proposed model is applied to weighted support vector regression(WSVR) for 1-dimensional data set simulation.The results indicate that the proposed method actually reduces the error of regression and yields higher accuracy than support vector regression(SVR) does.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887