有限时间热力学所得结果具有普适性,其研究结果已成为热物理学的一个重要基础.许多学者利用有限时间热力学方法对单级和多级正、反向两热源热力循环最优性能和最优构型进行了大量研究,获得了一些比经典热力学对于工程设计和优化更具有实际指导意义的新结论.综述了利用有限时间热力学理论对不同传热规律下单级和多级正、反向两热源热力循环最优性能和最优构型研究的最新进展,包括不同传热规律下内可逆和不可逆卡诺热机、制冷机和热泵循环的最优性能研究进展,两热源热机、制冷和热泵循环最优构型及多级复杂热力系统最优构型研究进展.
The results obtained by using finite time thermodynamics (F/T) are universal and have become one of important foundations of thermo-physics. A large number of researches have been carried out in the performance optimizations and optimal configurations of single-and multi-stage two-heat-reservoir direct and inverse thermodynamic cycles by using FTT. The obtained new results have more important practical significance for engineering design and optimization than those obtained by using classical thermodynamics. This paper reviews the new advances of the optimal performances and optimal configurations of single and multi-stage two-heat-reservoir direct and inverse thermodynamic cycles following different heat transfer laws, including the new advances of the optimal performances of endoreversible and irreversible Carnot heat engine, Carnot refrigerator and Camot heat pump cycles under different heat transfer laws, and the new advances of the optima/configurations of two-heat-reservoir heat engine, refrigerator and heat pump cycles, as well as multi-stage complex thermodynamic cycles with different heat transfer laws.