基于有限时间热力学理论,对恒温热源内可逆Lenoir循环进行功率效率特性分析与优化,得到换热器总热导给定的条件下循环的最大功率和最大效率。结果表明:在给定高、低温侧换热器热导的条件下,循环的功率、效率特性呈现"点"的特征;在高、低温侧换热器热导可优化的条件下,存在最佳的热导分配,使得循环的功率或效率取得最大值。高、低温热源温比增大或换热器总热导增大时,循环的功率、效率都将增大。
Based on finite time thermodynamic theory, the power and efficiency performances of endoreversible Lenoir cycle with constant-temperature heat reservoirs was analy The maximum power and maximum efficiency of the cycle was obtained with the sed and optimized. fixed total thermal conductances of heat exchangers. The results show that the power and efficiency performance curve of the cycle is a fixed"point"with constant thermal conductances of hot- and cold-side heat exchangers, and there exist optimal thermal conductance distrib UtlO efficiency, with variable thermal conduetances of hot- ns, and which lead to maximum power or maximum cold-side heat exchangers. Both the power and efficiency will be enhanced with the increase of ratios between high- and low-temperature heat reservoirs, or the total thermal conductances of heat exchangers.