采用基于密度泛函理论的平面波超软赝势方法和局域密度近似,研究Ru掺杂SnO 2形成的Sn 0.875 Ru 0.125 O 2复合氧化物电极的晶体结构和电子结构,比较掺杂前后体系的能带结构、电子态密度和载流子浓度。计算表明:Ru掺杂后SnO 2的晶胞体积缩小,复合氧化物电极的能带结构、电子态密度和载流子浓度均发生显著变化,导致材料的导电类型呈现近金属特性,揭示Ru掺杂后SnO 2导电性能显著增强的原因是导带底附近形成的杂质能级的贡献。
The lattice structure and the electronic properties of the composite oxide electrode, Sn 0.875 Ru 0.125 O 2 , formed by doping Ru into SnO2 were investigated with the ultra soft pseudo potential plane wave method and the local density approximation within density functional theory. The band structure, density of states and concentration of carrier of the Sn-based oxides before and after doping were compared. The results show that the cell volume of the system decreases and the band structure, density of states and concentration of carrier of the SnO2 all change significantly after Ru doping. All these changes lead to the similar metallic conductive mechanism of the Sn 0.875 Ru 0.125 O 2 . And then the physical essence of electronic structure changes leading to significant enhances of the conductive performance of the SnO2 doping Ru was revealed.