目的研究k-U-空间的对偶概念:k-U*-空间及其性质。方法利用了Banach空间理论的方法。结果与结论 k-U-空间和k-U*-空间是一对对偶概念,即若X*是k-U*-空间,则X是k-U-空间。若X*是k-U-空间,则X是k-U*-空间。
Aim To investigate k-U*-space as dual space of k-U-U-space and its properties.Methods The method of Banach space theory is adopted to study the aforesaid aim.Results and Conclusion k-U-spaces and k-U*-spaces are the dual notion,i.e.,if X* is k-U*-space,then X is k-U-space.If X* is k-U-space,then X is k-U*-space.