在本文中,设C是复数域,n和m是正整数,k为固定的自然数,且k≥ 2.设Mm(C)为C上m阶全矩阵空间,Sn(C)为C上n阶对称矩阵空间.本文分别刻画了从Sn(C)到Mm(C)和Sn(C)到Sm(C)上的保矩阵k次幂的线性映射.
Let C be a complex field. Let m and n be positive integers, k is a fixed positive integer and k≥ 2. Let Mm(C) and Sn,(C) be the vector spaces of all m × m matrices and n × n symmetric matrices over C, respectively. We characterize the linear maps preserving k-power from Sn,(C) to Mm(C) and Sn,(C) to Sm(C), respectively.