位置:成果数据库 > 期刊 > 期刊详情页
基于拥挤度的参数自适应蚁群系统
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]内江师范学院四川省高等学校数值仿真重点实验室,四川内江641110
  • 相关基金:国家自然科学基金(No.10872085);四川省教育厅重大培育项目(No.07ZZ016);四川科技厅应用基础研究基金(No.07JY029-125).
作者: 牟廉明[1]
中文摘要:

在蚁群算法中,如何有效处理加速收敛和出现早熟、停滞现象的矛盾一直是一个困难的问题。通过引入拥挤度来加强搜索过程中蚂蚁之间的协调和配合,提出了一种基于拥挤度的参数自适应蚁群算法。该算法采用提前主动预防早熟的策略,将拥挤度嵌入到蚁群算法的状态转移和信息素更新过程中,让局部信息素更新参数随局部搜索状态自适应地调整,全局信息素更新参数随全局搜索状态自适应地调整,大大提高了算法全局搜索能力和自适应能力,同时采用了一种简单有效的变异算法来加快收敛速度。用多个TSPLIB范例进行比较实验,结果表明,改进算法无论是求解质量、稳定性以及收敛速度都有显著提高。

英文摘要:

In ant colony algorithm, how to effectively deal with the contradiction between the convergence speed and the precocity and stagnation has been a difficult problem. A parameter adaptive ant colony system is proposed by introducing the crowding degree to strengthen the coordination and cooperation between ants in the search process. In the presented ant colony algorithm, it adopts the proactive strategies to avert the precocity and stagnation in advance, and embeds the crowding degree into the state transition and the pheromone update. The parameter in the local pheromone update adaptively changes with the local search state, and the parameter in the global pheromone update adaptively changes with the global search state. These make its global searching ability enhance remarkably. At the same time a simple and efficient mutation algorithm is adopted to accelerate convergence. Experimental resuits show that the presented algorithm has much higher quality and stability and convergence speed than that of classical ant colony algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887