对固定设计的多维广义线性模型,在λn^1/2/λn→0和其他一些正则性条件下,证明了自然联系函数下的拟似然方程n↑∑↓i=1 xi(yi-μ(x′iβ))=0的解βn即拟似然估计的渐近正态性,其中,λn(-↑λn)表示n↑∑↓i=1 xix′i的最小(最大)特征根,xi是有界的p×q回归变量,yi是q×1响应变量.
For generalized linear models with fixed designs, under the assumption λn^1/2/λn→0 and other regularity conditions, the asymptotic normality of maximum quasi likelihood estimators βn was proved, which is the solution to the quasi-likelihood equation n↑∑↓i=1 xi(yi-μ(x′iβ))=0 with natural link functions,where λn(-↑λn) denotes the minimum (maximum) eigenvalue of n↑∑↓i=1 xix′i are bounded p× q regressors and yi are q× 1 responses.