建立并分析了一个带有脉冲出生、垂直传染和时滞的SEIS传染病模型.利用频闪映射得到了无病周期解的存在性,并得到了两个临界值R*和R*,当R*〈1时,无病周期解全局吸引,疾病消失;当R*〉1时,疾病持续.
In this paper, tion is investigated . Using the the exact infection-free periodic R* 〈 1, the disease will die out a delay SEIS epidemic model with birth pulse and vertical infecdiscrete dynamical system determined by the stroboscopic map, solution is obtained. We also obtain two thresholds R* and R.,if whereas if R* 〉 1, the disease will be permanent.