位置:成果数据库 > 期刊 > 期刊详情页
改进的2维Otsu法及混沌粒子群递推的阈值分割
  • 期刊名称:中国图象图形学报
  • 时间:0
  • 页码:1843-1849
  • 语言:中文
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京航空航天大学信息科学与技术学院,南京210016
  • 相关基金:国家自然科学基金项目(60872065)
  • 相关项目:基于Contourlet变换和混沌粒子群的红外小目标检测方法
中文摘要:

鉴于现常用的灰度级一平均灰度级2维直方图区域划分将部分目标和背景点错分成边缘和噪声点这一不足,为此提出了一种基于灰度级一梯度2维直方图的Otsu阈值选取新方法,利用混沌粒子群优化算法来寻找分割阈值,并提出在迭代过程中,采用递推方法来大大减少适应度函数的重复计算。实验结果表明,与最近提出的基于灰度级一平均灰度级2维直方图Otsu法及粒子群的快速图像分割方法相比,该新方法由于尽可能地考虑了所有目标点和背景点,从而使分割后的图像区域内部均匀、边界形状准确、特征细节清晰,同时运行时间几乎不到现有算法的1/3,而且粒子群处理的收敛精度得到了进一步提高。

英文摘要:

In view of the shortage of regional division of the commonly used gray level-average gray level two-dimensional histogram, which some object and background inner points are wrongly divided as edge and noise points, an improved Otsu threshold selection method based on gray level-gradient two-dimensional histogram is proposed in this paper. The chaotic particle swarm algorithm is used to search for the best threshold. The repeat computations of the fitness function in iteration are reduced significantly using recursion. Compared with fast image segmentation algorithm based oq~gray level-average gray level 2-D Otsu method and particle swarm optimization , the experimental results show that the algorithm proposed in this paper not only considers all the object and background inner points and achieves a good segmentation quality in uniform regions, accurate borders and clear details of features, but also the running time is reduced to only 1/3 of that of the existing algorithm. At the same time the convergence property of particle swarm algorithm is further improved.

同期刊论文项目
同项目期刊论文