位置:成果数据库 > 期刊 > 期刊详情页
免疫粒子群核模糊聚类快速分形图像编码
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]南京航空航天大学信息科学与技术学院,南京210016
  • 相关基金:国家自然科学基金项目(60872065)
中文摘要:

针对经典分形编码算法编码时间过长和基于K-均值聚类等快速分形编码算法依赖数据分布等问题,提出了一种基于免疫粒子群优化(IPSO)和核模糊聚类的快速分形图像编码算法.提出基于IPSO的核模糊聚类算法,将IPSO算法应用于聚类中心的求解中,并将其应用于分形图像编码,分别对子块和父块进行核模糊聚类,以更加合理的分类搜索取代全局搜索,减少编码时间.实验结果表明,新算法的编码时间约为经典分形编码算法的1/6,其峰值信噪比只略微下降;与基于K-均值聚类和基于粒子群优化聚类等快速分形图像编码算法相比,新算法能以更少的编码时间获得更高的峰值信噪比.

英文摘要:

Aiming at the lengthy of classical fractal coding algorithm and the problem of fast fractal image coding algorithm based on such as K-means clustering,a fast fractal image coding algorithm based on immunity particle swarm optimization(IPSO)and fuzzy kernel clustering is proposed.Firstly,an algorithm of fuzzy kernel clustering based on IPSO is presented.The IPSO algorithm is used to calculate the cluster centers.Then the proposed algorithm of fuzzy kernel clustering based on IPSO is applied to fractal image coding.The range blocks and domain blocks are clustered reasonably by fuzzy kernel method,respectively.Range blocks are searched in the corresponding category of domain blocks.As a result,the encoding time is reduced significantly.The experimental results show that,the encoding time of the proposed algorithm is about six times less than that of the classical algorithm at the cost of slight decrease of peak signal-to-noise ratio.Compared with the fast fractal image coding algorithm reported recently based on such as K-means clustering and particle-swarm-optimization clustering,the proposed algorithm can achieve higher peak signal-to-noise ratio in much less encoding time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684