位置:成果数据库 > 期刊 > 期刊详情页
遥感图像在山区钉螺孳生地监测中的应用
  • ISSN号:1672-8467
  • 期刊名称:《复旦学报:医学版》
  • 时间:0
  • 分类:R184.38[医药卫生—流行病学;医药卫生—公共卫生与预防医学]
  • 作者机构:[1]复旦大学公共卫生学院流行病学教研室-教育部国家公共安全重点实验室,上海200032, [2]四川省普格县疾病预防控制中心,615300
  • 相关基金:国家自然科学基金重大项目(30590374); 国家科技重大专项(2008ZX10004-011)
中文摘要:

目的在山丘型血吸虫病流行区利用陆地卫星(Landsat)专题制图仪(thematic mapper,TM)遥感图像探测钉螺孳生地。方法收集四川省普格县地形图、TM遥感图像,现场调查钉螺孳生地,选择已知地物类型的区域建立训练样本,对TM卫星图像进行监督分类,并验证分类结果。结果所有地物被分成钉螺孳生地、河流、居住区、阴影区和其他地物等5类,钉螺孳生地主要分布在田地、坡地等有植被覆盖的环境。钉螺孳生地分类的准确性和可靠性分别为79.82%和85.58%,分类总精度达到80.22%。结论 TM遥感图像的监督分类能将山区钉螺孳生地有效地区分出来,有利于对钉螺孳生地进行监测,为山区钉螺的控制及血吸虫病的防治提供依据。

英文摘要:

Objective To monitor snail habitats in mountainous regions using thematic mapper(TM) remote sensing images of Landsat. Methods The topographic map and TM images of Puge County,Sichuan province of China were collected.Then the snail habitats were surveyed in Puge County.Training samples were built by selecting the known ground objects.Supervised classification analysis was applied to classify the TM images,and the classification results were verified via creating a confusion matrix. Results The TM images were classified into snail habitats,rivers,residential districts,shadow and other ground objects.Snail habitats were mainly located in vegetation-covered environments,such as croplands and grassed hillsides.The classification accuracy and reliability of snail habitats were 79.82% and 85.58% respectively,and the overall classification accuracy reached 80.22%. Conclusions Snail habitats can be identified by supervised classification analysis of TM remote sensing images,which is helpful for the surveillance of snail habitats and for the prevention of schistosomiasis in mountainous regions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《复旦学报:医学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:复旦大学
  • 主编:桂永浩
  • 地址:上海医学院路138号285信箱
  • 邮编:200032
  • 邮箱:xbyxb@shmu.edu.cn
  • 电话:021-54237164 021-54237314
  • 国际标准刊号:ISSN:1672-8467
  • 国内统一刊号:ISSN:31-1885/R
  • 邮发代号:4-262
  • 获奖情况:
  • 2008年第二届中国高校优秀科技期刊奖,2010年第三届中国高校精品科技期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,美国生物科学数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11703