以Hill方程为基础对圆轨道近距离双脉冲绕飞优化问题进行研究.首先给出双脉冲绕飞的优化模型并推导分析得出待优化的变量,同时构造了燃耗和时间加权的性能指标函数并考虑安全约束,然后设计了粒子群优化算法对绕飞过程进行优化,最后通过对-V-bar到+V-bar、+ R-bar、+H-bar的绕飞进行仿真获得燃耗和时间加权最优的安全绕飞轨迹,与遍历寻优结果一致,由此验证了粒子群优化算法的有效性.
Based on the Hill equation, the article studies the optimization problem of double-impulsive fly-around process. At first, the optimization model of double-impulsive fly-around is given and the varia- bles which need to be optimized are analyzed. The article proposes a performance index function, which is the weighted sum between the time and the consumption of the fuel, as well as considering the constraint of trajectory safety. In addition, the particle swarm optimization algorithm is designed. Finally, the designed particle swarm optimization algorithm is examined to be effective by the simulations of suc- cessful and safe fly-around mission between - V-bar and + V-bar, + R-bar as well as + H-bar. The results are consistent with the traditional optimization algorithm, which proves the validity of the PSO.