从法向量的角度研究n维Minkowski空间R1^n(n≥4)中具有零平均曲率的类空曲面,并且证明了一个Bernstein型的定理.我们推广了Estudillo和Romero的结果,完全解决了珊中有关浸入平稳曲面的Bernstcin型问题.
In the view of normal fields, we study in this article the spacelike surfaces with zero mean curvature in the Minkowski space R1^n(n 〉 4), and get a theorem of Bernstein type. By doing so, we have generalized a result of Estudillo and Romero and have completely solved the problem of Bernstain type for immersed stationary sufaces in R1^n.