本文研究了球面域上高阶拉普拉斯的特征值问题.利用Rayleigh-Ritz不等式.获得了球面域上高阶拉普拉斯的第(k+1)个特征值的上界估计,这个估计式由前志个特征值给出.
This paper studies the universal inequalities of eigenvalues for higher order Laplacians on spherical domains. By using the Rayleigh-Ritz inequality, we obtain explicit upper bound for the (k+ 1)-th eigenvalue of higher order Laplacians on spherical domain in terms of its first k eigenvalues.