位置:成果数据库 > 期刊 > 期刊详情页
基于事件卷积特征的新闻文本分类
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:武汉大学计算机学院,武汉430072
  • 相关基金:国家自然科学基金重点资助项目(61133012)
中文摘要:

以往的卷积神经网络模型在对文本建模和分类时,通常按顺序提取n-gram卷积特征,忽视了长距离依存关系中的句法结构和语义信息。提出了一种基于事件卷积特征的文本分类方法,利用事件的语义特性弥补之前模型的不足。该方法使用依存关系抽取出文本中的事件集合,通过卷积神经网络进行事件特征提取,并在此基础上进行文本分类。在对中文新闻语料的多分类实验中,该方法较传统的文本分类方法有明显的提高,较使用n-gram的卷积神经网络模型更为稳定。实验结果说明了模型的有效性以及事件特征的优越性。

英文摘要:

In text modeling and classification, previous convolutional neural network (CNN) approaches processed on the ngram features based on the literal order of texts. They neglected the syntactic structure and semantic information over long distance dependencies. This paper proposed a event convolutional feature based model to overcome the defects by making use of semantic characteristics of events. It found events from text and applied a CNN to extract features for classification. In Chinese news multi-class classification experiment, the method performs better than traditional ones and is more balanced than n-gram CNN models. The experiment result shows the effectiveness of the model as well as the superiority of the event features.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049