位置:成果数据库 > 期刊 > 期刊详情页
基于复杂网络重叠社团发现的微博话题检测
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉大学计算机学院,武汉430072, [2]贵州师范大学大数据与计算机科学学院,贵阳550001
  • 相关基金:国家自然科学基金(61133012,61373108);贵州省科技厅联合基金(黔科合J字LKS201237)
中文摘要:

社交媒体话题检测一直是个热点问题,由于社交数据杂乱异构,且具有时效性,语义模糊性等特点,话题检测也是个难点问题.研究利用复杂网络对社交文本数据进行建模,并结合一种基于极大团凝聚层次聚类的重叠社团发现方法实现了社交话题的检测.文本数据建模中,通过自定义突发系数量化话题词,即把话题词看作具有时域分布偏好的关键词,并通过自定义相关系数连接话题词,构建话题网络.为使自定义系数更适用于动态数据环境,实验结合真实数据进行了适应性测试优化系数.文章把采用EAGLE重叠社团发现方法在公开数据集上评测,根据Q函数值显示结果明显优于当前一些重叠社团发现策略,研究对采样的60万条青少年社交数据进行了话题分析并可视化了分析结果.

英文摘要:

Topic detection in social media is a hot yet challenging issue in social computing given most da- ta there are heterogeneous, time-evolving and linguistically ambiguous. In this paper, the authors ex- plore the idea of achieving this goal through complex network modeling which has demonstrated excel- lent interpretability of the real world. Specifically, a complex network was constructed based on pre- processed topic words where two parameters, namely the emergency and correlation coefficients, were also introduced to allow us to filter social data through the network as well as determine their possible correlations. This approach was then applied to analyze 600,000 messages by teenager users in Weibo. corn to identify overlapping communities with the help of the well-established algorithm EAGLE. It was demonstrated that, compared to other popular approaches such as CONGO and Peacock a much better Q-value results has been obtained by the method proposed here.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542