研究了一类S-分布时滞递归神经网络的渐近行为,通过构造一类带有Razuminkhin条件的Lyapunov函数,证明了系统的耗散性。利用算子分解的方法讨论了网络模型的渐近紧性,结合吸引子的理论给出了全局吸引子存在的充分条件。
The asymptotic behavior of the recurrent neural network with distributed delays is investigated, and the dissipation of the system is solved by constructing a Lyapunov function with a Razuminkhin condition. As an application, a sufficient condition is given for the existence of a global attractor.