应用Nevanlinna理论的基本方法,研究了差分函数φ(z)=f(z+c1)+f(z+c2)+…+f(z+cn)-nf(z)以及差商Φ(z)=φ(z)/f(z)的零点个数及零点收敛指数的问题.在假设f是级为σ(f)=σ〈1的超越函数的条件下,证明了λ(φ)=σ(φ)=σ和λ(Φ)=σ(Φ)=σ,推广了前人已有的结果.
By using the fundermental methed of Nevanlinna theory,the number of zero and the convergence exponent of zero of the differences φ(z)=f(z+c1)+f(z+c2)+…+f(z+cn)-nf(z) and Φ(z)=φ(z)/f(z) are estimated.Under the conditions of that f is a transcendental meromorphic function of the order of growth σ(f)=σ1,the λ(φ)=σ(φ)=σ and λ(Φ)=σ(Φ)=σ have been proved,which is generalized the earlier results.