研究了整函数及其差分多项式分担有限复数集的唯一性,得到了如下结果:设Sm={1,w,…,w^m-1},其中w=cos(2π/m)+i sin(2π/m),c为非零有限复数,n(〉5),m(≥2)均为正整数.如果f(z),g(z)为有限级整函数,满足E(Sm,f(z)^nf(z)-1f(z+c))=E(Sm,g(z)^n(g(z-1))g(z+c)),那么f(z)≡g(z).
In this paper, we study the uniqueness problems of sharing sets of difference polynomials of entire functions and obtain the following result. Let n(〉5),m(≥2) be two positive integers,c∈C-{0},and Sm={1,w,…,w^m-1},where w=cos(2π/m)+i sin(2π/m).If two nonconstant entire functions f(z), g(z) satisfy E(Sm,f(z)^nf(z)-1f(z+c))=E(Sm,g(z)^n(g(z-1))g(z+c)),then f(z)≡g(z)