利用Nevanlinna的基本理论与方法,讨论了一类慢增长亚纯函数差分的零点和不动点,设f是超越亚纯函数,在一定条件下,证明了q-差分函数Fk(z)=f(q1z)+f(q2z)+…+f(qkz)-kf(z)或者q-差商函数Gk(z)=Fk(z)/f(z)至少有一个具有无穷多个零点和至少有一个具有无穷多个不动点.
In this paper,f is supposed a transcendental meromorphic function by using the basic theory and method of Nevanlinna to estimate the number of zeros and fixed point of the differences of slowly growth meromorphic functions.On the certain condition the q-differences Fk(z) = f(q1z) + f(q2z) +…+ f(qkz)-kf(z) or q-difference quotient Gk(z)=(Fk(z)/f(z)) with infinite number of zero are proved,and Fk(z)or Gk(z) with infinite fixed point are proved as well as.