位置:成果数据库 > 期刊 > 期刊详情页
迁移蜂群优化算法及其在无功优化中的应用
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP[自动化与计算机技术]
  • 作者机构:华南理工大学电力学院,广州510640
  • 相关基金:国家重点基础研究发展计划(973计划)(2013CB228205); 国家自然科学基金(51177051,51477055)资助
中文摘要:

提出了一种全新的迁移蜂群优化算法,并应用到电力系统无功优化问题.利用Q学习的试错与奖励机制构造蜂群的学习模式,并采用强化学习的行为迁移技术实现蜂群的迁移学习.为解决算法求解多变量优化问题遇到的维数灾难,提出了状态–组合动作链的方式将状态–动作空间分解成若干低维空间,明显降低算法的计算难度.仿真结果表明:本文所提算法可以保证最优解质量的同时,寻优速度能提高到传统启发式智能算法的4~67倍左右,非常适用于大规模复杂系统非线性规划问题的快速求解.

英文摘要:

This paper proposes a novel transfer bees optimizer(TBO), which is implemented to solve the reactive power optimization of power systems. The trial-and-error and the reward mechanism of Q-learning is adopted to construct the learning mode of the bees, and the technology of behavior transfer from reinforcement learning is used for transfer learning.Moreover, a space-action chain is proposed to decompose the solution space into several lower-dimensional spaces, thus it can solve the curse of dimension resulted from the multiple variables optimization problem. Simulation results show that TBO can obtain a high-quality optimal solution, while its convergence speed can be accelerated as many as 4 to67 times faster than that of the conventional heuristic artificial algorithm(AI) algorithm, which is very suitable for fast optimization of nonlinear programming in a large-scale complex system.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550