总结了完备黎曼流形上完备的无共轭点测地线所隐含的几何性质、完备非紧具非负曲率黎曼流形的几何结构、完备非紧具非负Ricci曲率黎曼流形的几何拓扑性质以及完备非紧黎曼流形上的Busemann函数所隐含的几何拓扑性质,并提出了一些未解决的问题.
The paper gathers some results in Riemannian manifolds, including in complete geodesics without conjugate points, the geometric struture of a manifold with nonnegative curvature, the topology of a manifold with nonnegative Ricci curvature and some properties of Busemann function etc. Also, the paper quotes some open problems.