设M是具非负Ricci曲率的n维完备非紧黎曼流形,若M具次大体积增长 vol[B(p,r)]≥βM^r^n-1,任意p∈M,任意r≥1 和满足强有界几何条件,则M具有限拓扑型.
Let M be a complete noncompact Riemannian manifold with nonnegative Ricci curvature.If M is with sub-large volume growth vol[B(p,r)]≥βM^r^n-1,arbitary p∈M,arbitary r≥1 and strong bounded geometry condition,then M is of finite topological type.