设M是具非负Ricci曲率的n维黎曼流形,其截曲率有下界,对M中的任意的点p有vol[B(p,r)]/r^n-1=αM+o(1/r^n-1)且假设函数f(r)=vol[B(p,r)]/2In(r)r^n-1是单调递减的,则M具有限拓扑型,其中In(r)是一有界函数。
The paper proves that if M is a complete open n-manifold with Ric ≥ 0 , its sectional curvature bounded below and vol[B(p,r)]/r^n-1=αM+o(1/r^n-1),then M is of finite topological type provided that the function f(r) =vol[B(p,r)]/2In(r)r^n-1 is monoton decreasing, where In(r) is a bounded function.