研究了一类不确定性分布参数系统的鲁棒指数稳定性和稳定化问题.利用推广到Hilbert空间的Lyapunov-Krasovskii方法和不等式技巧,证明了线性时滞系统的鲁棒指数稳定性,并且依赖时滞的鲁棒指数稳定性和稳定化的充分条件可以表示成线性算子不等式(LOI)形式,其中决策变量是Hilbert空间的算子。把得到的结果应用到一个抛物型方程,这些条件归结为线性矩阵不等式(LMI)。最后,一个数值例子说明了稳定性分析的有效性。
This paper presents robust exponential stability and stabilization conditions for uncertain linear distributed parameter time-delay systems. Based on the Lyapunov- Krasovskii method extended to a Hilbert space, robust exponential stability criteria are derived and linear matrix inequality (LMI) technique. Sufficient delay-dependent conditions for robust exponential stability are obtained in the form of linear operator inequalities (LOI), where the decision variables are operators in the Hilbert space. Being applied to a parabolic equation, these conditions are reduced to standard Linear Matrix Inequalities (LMI). Finally, an example is provided to demonstrate the effectiveness of the proposed criteria.