位置:成果数据库 > 期刊 > 期刊详情页
基于图像处理的显微外科手术质量评价研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南科技大学电子信息工程学院,河南洛阳471003
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60475021 );河南省杰出青年基金(No.0412000400)
中文摘要:

目前常用的物体识别方法,其过程非常复杂,信息量和计算量都很大。结合改进遗传算法的神经网络方法,采用将结构与误差结合的适应度函数,改进的遗传算子实现对BP网络结构和权值的同步优化:提出一种用改进遗传算法优化后的BP神经网络进行物体识别,并以提取的修正不变矩特征作为BP神经网络的输入,仿真结果表明该方法提高了识别的稳定性和收敛性能,并且识别率较高:从而验证了该方法的有效性:

英文摘要:

Algorithms for recognition are cnmplcx,and the information and computation are large at present.Neural network based on improved genetic algorithm adopts fitness function of combining structure and error and the improved genetic operator to implement the optimization of structure and weights of BP network simultaneity.To recognize objections,BP neural network based on improved genetic algorithm is proposed in the paper,and the improved invariant moments extracted are regarded as the imput of BP network.The simulation results indicate that the method improves the stability and convergence capability of recognition.Moreover,the recognition rate is very high.So the efficiency is proved in the paper.

同期刊论文项目
期刊论文 42 会议论文 9 著作 1
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049