位置:成果数据库 > 期刊 > 期刊详情页
ASM及其改进的人脸面部特征定位算法
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南科技大学电子信息工程学院,洛阳471003
  • 相关基金:国家自然科学基金(60475021).
中文摘要:

为了提高主动形状模型(ASM)算法的性能,提出一种改进的ASM算法.首先,精确定位出瞳孔的位置用作平均形状模型的初始化;其次,采用全局形状模型、面部显著特征区域成分形状模型以及人脸面部的相似性构形相结合的办法来共同约束特征点的定位结果;最后,特征点周围采用Log-Gabor小波系数进行描述,并建立局部纹理模型,提高了算法对光照和噪声的鲁棒性.实验结果表明,与传统的ASM算法相比,该算法特征点定位精确度有显著的提高,

英文摘要:

To improve active shape model (ASM) accuracy in facial feature points location in facial images, an improved ASM based algorithm is proposed. First, the irises are localized and utilized to initialize the shape model; Second, facial similar configuration, feature subspaces of global face shape model and salient feature local shape models are all employed to constrain the movement of feature points; at last, log-Gabor coefficients are used to describe the local texture distribution and build models for each feature point to increase the robustness to illumination change and other noises. Experimental results show that our algorithm performs significantly better than the traditional ASM.

同期刊论文项目
期刊论文 42 会议论文 9 著作 1
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752