位置:成果数据库 > 期刊 > 期刊详情页
两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较
  • ISSN号:1004-5759
  • 期刊名称:《草业学报》
  • 时间:0
  • 分类:Q943.2[生物学—植物学]
  • 作者机构:[1]Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China, [2]Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China, [3]Agronomy College, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • 相关基金:Supported by "863" Project(2008AA10Z153); the National Natural Science Foundation of China(31171578); Heilongjiang Provincial Higher School Science and Technology Innovation Team Building Program(2011TD005); the National Basic Scientific Talent Training Fund Projects(J1210069) Acknowledgments Zaib-un-Nisa and ALi Inayat Mallano contributed equally.
中文摘要:

The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions of MIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designated Gs MIPS2 from wild soybean Glycine soja 07256 was functionally characterized contained an open reading frame(ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated that Gs MIPS2 was induced by salt stress and expressed in roots of soybean. The positive function of Gs MIPS2 under salt response at different growth stages of transgenic Arabidopsis was also elucidated. The results showed that Gs MIPS2 transgenic lines displayed increased tolerance as compared to WT and atmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1, RD29 A, RD29 B, P5 Cs and COR47 were significantly up-regulated in Gs MIPS2 overexpression lines than wild type and atmips2 mutant. Collectively, these results suggested that Gs MIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression of Gs MIPS2 gene from wild soybean improved salt tolerance in transgenic Arabidopsis.

英文摘要:

The enzyme myo-inositol-1-phosphate synthase(MIPS EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions of MIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designated Gs MIPS2 from wild soybean Glycine soja 07256 was functionally characterized contained an open reading frame(ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated that Gs MIPS2 was induced by salt stress and expressed in roots of soybean. The positive function of Gs MIPS2 under salt response at different growth stages of transgenic Arabidopsis was also elucidated. The results showed that Gs MIPS2 transgenic lines displayed increased tolerance as compared to WT and atmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1, RD29 A, RD29 B, P5 Cs and COR47 were significantly up-regulated in Gs MIPS2 overexpression lines than wild type and atmips2 mutant. Collectively, these results suggested that Gs MIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression of Gs MIPS2 gene from wild soybean improved salt tolerance in transgenic Arabidopsis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《草业学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术学会
  • 主办单位:中国草学会 兰州大学
  • 主编:南志标
  • 地址:兰州市嘉峪关西路768号
  • 邮编:730020
  • 邮箱:cyxb@lzu.edu.cn
  • 电话:0931-8913494
  • 国际标准刊号:ISSN:1004-5759
  • 国内统一刊号:ISSN:62-1105/S
  • 邮发代号:54-84
  • 获奖情况:
  • 获2002年“百种中国杰出学术期刊”奖
  • 国内外数据库收录:
  • 英国农业与生物科学研究中心文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:23243