从野生大豆盐碱胁迫基因表达谱中筛选并克隆到GsCBRLK基因, 与人工合成的高甲硫氨酸含量SCMRP基因构建成双价植物表达载体, 将其转入苜蓿, 获得超量表达的转基因苜蓿, 并进行耐碱性分析。结果显示, 经过100、150 mmol L–1 NaHCO3处理14 d后, 转基因株系生长状态良好, 而非转基因对照株系萎蔫、失绿、甚至死亡;转基因株系的丙二醛含量和相对质膜透性显著低于非转基因株系(P〈0.05), 而SOD酶活性显著高于非转基因对照(P〈0.05), 说明超量表达GsCBRLK基因增强了苜蓿的耐碱能力;各转基因株系的甲硫氨酸含量均比对照植株高, 表明SCMRP基因的导入提高了苜蓿叶片甲硫氨酸的含量。
Drought and saline-alkaline stresses, significantly affect growth and productivity of plants. Plants adapt to these environmental stresses by inducing numerous genes at the transcriptional level and protein phosphorylation. In this study, an expression vector BEOCBRLK-SCMRP was constructed. A stress-responsive kinase gene of Glycine soja (GsCBRLK) was selected by our laboratory previously according to gene expression profiles under salinity, drought and cold stresses. Over expression of GsCBRLK in transgenic Arabidopsis resulted in enhanced tolerance to high salinity and ABA.SCMRP is a kind of storage protein gene coding high-sulfur-containing amino acid, which was designed and synthesized according to the soybean coden usage. We transformed GsCBRLK and SCMRP genes into alfalfa using a developed method, under the treatments of 100, 150 mmol L–1 NaHCO3 for 14 days, the transgenic alfalfa grew well while wild type plants exhibited discoloration and stunted growth, or even death. There were significant changes in MDA content and relative membrane permeability caused by alkaline stress in non-transgenic lines as compared with transgenic lines (P〈0.05). Moreover, compared with non-transgenic plant, transgenic alfalfa had higher level of SOD activity under alkali stress condition. Analysis of amino acid content showed that transgenic plants were rich in methionine content compared with non-transformed plants. These results indicated that the transformants carrying GsCBRLK and SCMRP could enhance both alkaline tolerance and methionine amino acid content in alfalfa.