设{x,Xn,n≥1}为严平稳的NA随机变量序列,{ani,1≤i≤n,n≥1}为实数阵列,Sn=n∑i=1aniXi,Vn2=n∑in1ani2Xi2,在适当的条件下,证明了NA序列自正则加权和的几乎处处中心极限定理.
Let {X,Xn,n ≥ 1} be a sequence of strictly stationary negatively associated random variables,{ani,1≤i≤n,n≥1} be an array of real numbers with Sn=n∑i=1aniXi,Vn2=n∑in1ani2Xi2,Under some suitableassumptions, we proved almost sure central limit theorem for self-normalized weighted sums of negatively associated random variables.