设X,X_1,X_2(,···是一严平稳的)ρ^--混合随机变量序列.在满足一定的条件下,证明自正则部分和之和乘积(k∏i=1T_4/i(i+1)μ/2)^(μ/βV_k)的几乎处处中心极限定理,其中Sn=∑_(i=1)^nX_i,V_n^2=∑_(i=1)^nX_i^2,Tn=∑_(i=1)^nSi.
Let X,X_1,X_2,...be a strictly stationary sequence of ρ~--mixing random variables.A universal result in almost sure limit theorem for the self-normalized products of sum-() μ∏kβVk∑s of partial sums (k∏i=1T_4/i(i+1)μ/2)~(μ/βV_k) established,where Sn=∑_(i=1)~nX_i,V_n~2=∑_(i=1)~nX_i~2,Tn=∑_(i=1)~nSi.