本文研究了行m—NSD随机变量阵列的完全收敛性问题.主要利用m—NSD随机变量的Kolmogorov型指数不等式,获得了行m—NSD随机变量阵列的完全收敛性定理,将Hu等(1998)and Sung等(2005)的结果从独立情形推广到了m—NSD随机变量阵列.本文的结论同样推广了Chen等(2008),Hu等(2009),Qiu等(2011)和Wang等(2014)的结果.
In this article, we study complete convergence theorems for arrays of rowwise m-negatively superadditive-dependent (m-NSD) random variables. By using Kolmogorov-type exponential inequality for m-NSD random variables, we obtain complete convergence theorems for arrays of rowwise m-NSD random variables, which generalize those on complete convergence theorem previously obtained by Hu et al. (1998) and Sung et al. (2005) from independent distributed case to m-NSD arrays. Our results also extend the corresponding results of Chen et al.(2008), Hu et al. (2009), Qiu et al. (2011) and Wang et al. (2014).