2个ν阶拉丁方,L=(lij)和M=(mij)被称为是r-正交的,如果把它们重叠起来可以得到恰好,个不同的有序元素偶,即|{(lij,mij):l≤i,j≤ν}{=r,记为r-MOLS(ν).r-MOLS(ν)在r∈{ν+1,ν2-l}上的不存在性已经得到证明.如果M是三的(3,2,1)-共轭,可认为L是(3,2,1)-共轭r-正交的,可记为(3,2,1)-r-COLS(ν).并且证明了(3,2,1)-r-COLS(ν)在r∈{ν+2,ν+3,ν+ν5}上的不存在性.
Two latin squares of order ν, L = (Iij) and M = (mij) are called to be r-orthogonal if their superposition produces exactly r distinct ordered pairs, that is|{(lij,mij):1≤i,j≤ν}|=r,which is denoted by r-MOLS(ν). It has been proνed that there does not exist an r-MOLS(ν) for re {ν + 1,ν2 - 1}. If M is the (3,2,1)-conjugate of L, then L is called to be (3,2,1)-conjugate r-orthogonal, as denoted by (3,2,1)-r-COLS(ν). In this paper, the nonexistence of (3,2,1)-r-COLS(ν) for re {ν+2,ν+3,ν+5} is proved.