由一个拟群(Q,(?))可以定义出6个共轭拟群,这6个共轭拟群不一定互不相同,其构成的集合C(Q,(?))的基数t可能的取值是1,2,3或6.记q(n,t)是所有满足|C(Q,(?))|=t的n阶拟群的个数,本文将给出q(n,2)和q(n,6)的计数问题.
With a quasigroup,we can define six conjugate quasigroups which are not necessarily distinct.The number of distinct conjugates of a quasigroup is always 1,2,3 or 6. Denote the set of the conjugates of a quasigroup(Q,(?)) by C(Q,(?)),and the number of all quasigroups of order n satify |C(Q,(?))|= t by q(n,t).In this paper,we get the calculators to count the q(n,2) and q(n,6).