位置:成果数据库 > 期刊 > 期刊详情页
Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:TQ174.758[化学工程—陶瓷工业;化学工程—硅酸盐工业] TN141[电子电信—物理电子学]
  • 作者机构:[1]Heilongjiang Key Laboratory for Low-Dimensional System and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China, [2]Harbin University of Science and Technology, Harbin 150080, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nso. 60776010, 60940021 and 11074060); the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2008-07); and the Doctoral Start-up Fund of Harbin Normal University, China.
中文摘要:

Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied.The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact metal electrodes.The current increases linearly with the bias,indicating good ohmic contacts between the nanowire and the electrodes.The resistivity of the ZnO nanowire is calculated to be 3.8 ·cm.We investigate the photoresponses of an individual ZnO nanowire under different light illumination using light emitting diodes(λ = 505 nm,460 nm,375 nm) as excitation sources in atmosphere.When individual ZnO nanowire is exposured to different light irradiation,we find that it is extremely sensitive to UV illumination;the conductance is much larger upon UV illumination than that in the dark at room temperature.This phenomenon may be related to the surface oxygen molecule adsorbtion,which indicates their potential application to the optoelectronic switching device.

英文摘要:

Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied. The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact metal electrodes. The current increases linearly with the bias, indicating good ohmic contacts between the nanowire and the electrodes. The resistivity of the ZnO nanowire is calculated to be 3.8 Ω·cm. We investigate the photoresponses of an individual ZnO nanowire under different light illumination using light emitting diodes (λ= 505 nm, 460 nm, 375 nm) as excitation sources in atmosphere. When individual ZnO nanowire is exposured to different light irradiation, we find that it is extremely sensitive to UV illumination; the conductance is much larger upon UV illumination than that in the dark at room temperature. This phenomenon may be related to the surface oxygen molecule adsorbtion, which indicates their potential application to the optoelectronic switching device.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406