同轴介质阻挡放电具有广泛的应用前景。采用光学方法,利用水电极介质阻挡放电装置,对空气同轴介质阻挡放电特性及活性粒子光谱强度进行了研究。光谱测量结果发现放电发射谱中存在777.5和844.6nm的氧原子谱线,表明等离子体中产生了高化学活性的氧原子。测量了放电中氧原子谱线强度随物理参数(外加电压、流量和含量)的变化关系。结果发现氧原子谱线强度随着外加电压的增加而增强;随着流量或氩气含量(空气中混入少量氩气)的增加,谱线强度先增大后减小,当流量为30L.min-1或者氩气含量为16.7%时氧原子谱线强度达到最大值。
Coaxial dielectric barrier discharge has extensive application prospects. A dielectric barrier discharge device with water electrode was used to investigate the discharge properties and spectral intensity emitted from active particles in the air by optical method. Results indicate that the optical emission spectra consist of spectral lines from oxygen atoms (777.5 and 844.6 nm), which implies that oxygen atoms with high chemical activity were generated in the discharge plasma. Through spatially resolved measurements, spectral intensities from oxygen atoms were given as functions of the experimental parameters such as the value of the applied voltage, the gas flow rate and argon content. Results show that the spectral line intensity from oxygen atom in- creases with increasing the peak value of the applied voltage, increases with increasing the gas flow rate, reaches its maximum with a gas flow rate of 30 L . min-1 and then decreases with further increasing the gas flow rate. Similarly, the spectral line in- tensity increases firstly and then decreases with increasing argon content (in a mixture of argon and air) and a maximum is reached when argon content is 16.7%.