针对一类含有时变和时不变参数的高阶非线性系统,提出了一种新的自适应迭代学习控制方法。该算法利用参数分离性原理和改进的Backstepping方法相结合,可以处理非线性参数化系统的跟踪问题。非线性参数化不确定项利用分离性原理来解决,而Backstepping方法处理不匹配的不确定项。通过构造参数的微分型自适应律和差分型自适应律,使得跟踪误差的平方在一个有限区间上的积分收敛于零。构造了Lyapunov-like函数和自适应学习控制律,证明了所有信号均在有限区间上的积分的意义下是有界的。仿真结果验证了所提算法的有效性和可行性。该方法为以后设计类似的非线性参数化系统的跟踪问题提供了先验知识。