位置:成果数据库 > 期刊 > 期刊详情页
基于AP聚类的支持向量机公交站点短时客流预测
  • ISSN号:2095-3844
  • 期刊名称:《武汉理工大学学报:交通科学与工程版》
  • 时间:0
  • 分类:U491[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:兰州交通大学交通运输学院,兰州730070
  • 相关基金:国家自然科学基金项目(批准号:61164003,61364026); 教育部人文社会科学研究项目(批准号:13XJC630017); 甘肃省自然科学基金项目(批准号:1310RJZA032,148RJZA052)资助
中文摘要:

公交站点短时客流预测是公交调度决策的基础,文中设计了一种基于AP聚类算法的支持向量机用于公交短时客流预测.该方法利用AP聚类算法将客流调查数据划分为若干个聚类子集,对每一子集建立支持向量机预测模型,并采用遗传算法对预测模型的参数进行优化选择.该方法在兰州市快速公交站点客流数据统计的基础上进行实例分析,结果表明:设计的遗传算法可以有效解决支持向量机模型中的参数优选问题,使用AP聚类算法对客流数据进行分类可以提高支持向量机的预测精度,该预测方法可有效的对公交车站客流进行短时预测.

英文摘要:

Short-term passenger flow forecasting on bus stop is an important technical support for bus dispatch strategy. A Support Vector Machine (SVM) method based on Affinity Propagation (AP) is developed to forecast short-term passenger flow based on the characteristic analysis. The AP clustering algorithm is used to divide the passenger flow into several cluster subsets and the prediction model of SVM is established based on each subset. Then, the parameters of prediction model are optimized by genetic algorithms. This forecasting method is validated on some bus stations on Lanzhou bus rapid transit. The results show that the designed genetic algorithm can effectively solve the problem of pa- rameter optimization in SVM model, the classified passenger flow data using the AP algorithm can improve the forecasting accuracy of SVM and this method is suitable for the short-term passenger flow forecasting.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉理工大学学报:交通科学与工程版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉理工大学
  • 主编:骆奇峰
  • 地址:武汉市武昌区和平大道1178号89信箱
  • 邮编:430063
  • 邮箱:jwuttse@whut.edu.cn
  • 电话:027-86538436
  • 国际标准刊号:ISSN:2095-3844
  • 国内统一刊号:ISSN:42-1382/U
  • 邮发代号:38-148
  • 获奖情况:
  • 1997年全国优秀科技期刊,1995年全国自然科学优秀学报,1999年全国高校优秀学报及教育部优秀科技期刊,2010年中国高校优秀科技期刊,2010年中国科技论文在线优秀期刊二等奖,2008年RCCSE中国权威学术期刊,湖北省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊
  • 被引量:13741