设D是n阶有向图(允许有环但不允许有重复弧),X包含V(D),集指数expD(X)是这样的最小正整数p,使得对D中每个点v,存在从X的至少一个点到v的长为p的途径.若这样的正整数p不存在,则定义expD(x)=∞.D的第k重上广义指数F(D,k):=max{expD(x)|X包含V(D),|X|=k},1≤k≤n.如果F(D,k)〈∞,则称D是k-上本原的.本文完全刻划了k-上本原对称有向图的第k重上广义指数的极图.
Let D be a digraph (loops are permitted but no multiple arcs) of order n, and let X lohtarn V(D). The set exponent exPD(X) is defined to be the smallest positive integer p such that for each vertex v of D, there exists a walk of length p from at least one vertex in X to v. If no such p exists, then we define exPD(X) = ∞. Let 1 ≤ k ≤ n. Then F(D, k) : = max{exPD(X)| X belong to V(D), |X| = k} is called the kth upper generalized exponent of D. D is said to be k-upper primitive if F(D, k) 〈 ∞. The k-upper primitive symmetric digraph of order n whose kth upper generalized exponents achieve the maximum value is completely characterized.