首先介绍了多项式与多项式的基本式之间的一些性质,然后得到了定理:对于交换的无零因子环R,若满足条件:R[x]中任意两个多项式f(x)、g(x)都有最大公因式,那么对于R[x]中的任意互素的多项式-f(x)、g(x)、h(x),且不全为常数,以及任何自然数n≥3,等式广(x)+g^n(x)=h^n(x)永远不成立。
First,some properties between f(x) and the basic form of f(x) are explained. Then,a theorem is proved:Given a commutative ring without zero divisors satisfaying some conditions, then any two polynomials in R[x] have a greatest common divisor,then for polynomials f(x),g(x),h(x) which are mutually prime in R[x] and all are not constants,f^n(x)+g^n(x)=h^n(x) is never true for all n≥3.