位置:成果数据库 > 期刊 > 期刊详情页
遗传前馈神经网络在函数逼近中的应用
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学电子信息学院,苏州215021
  • 相关基金:国家自然科学基金资助项目(60572076)
中文摘要:

人工神经网络具有高计算能力、泛化能力和非线性映射等特点,被成功应用于众多领域,但缺乏用于确定其网络拓扑结构、激活函数和训练方法的规则。该文提出利用遗传算法优化前馈神经网络的方法,将网络结构、激活函数和训练方法等编码作为个体,发现最优或次优解,针对特定问题设计较理想的前馈神经网络。介绍遗传算法的具体步骤,对非线性函数逼近进行实验,结果表明优化后前馈神经网络的性能优于由经验确定的前馈神经网络,验证了本文方法的有效性。

英文摘要:

Artificial neural network is successfully applied to solve actual problems in many areas because of its excellent computation ability, universality and nonlinear mapping. There is not a guided formula to specify the network structure, activation function and training method. This paper presents a method to optimize the feedforward neural network by Genetic Algorithm(GA), in which the network structure, activation function and training method are encoded as an individual. With optimum solution founded by GA, the feedforward neural network is satisfied. Steps of GA and an example of nonlinear function approximation are given. The experimental results of nonlinear function approach show that the performance of optimized network is better than that of experiential network and identifies validity of the method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139