Enhanced boiling experiments of two different enhanced structures were carried out in a thermosyphon loop evaporator chamber. One was micro-columns array structure (MCAS), which was fabricated on copper plate surface with interaction high speed wire electrode discharge machining (HS-WEDM). The other was the ramification of MCAS, named micro-column-array and sintered-copper compound structure (MSCS), which was fabricated with sintered method on micro-column array structure. Considering the wall superheat and critical heat flux (CHF), comparisons were made between them. The results show that both MCAS and MSCS can enhance the boiling heat transfer. It is also found that the enhanced boiling heat transfer ability of MSCS is changed obviously while the porosity of the sintered copper layer is changed.
Enhanced boiling experiments of two different enhanced structures were carried out in a thermosyphon loop evaporator chamber. One was micro-columns array structure (MCAS), which was fabricated on copper plate surface with interaction high speed wire electrode discharge machining (HS-WEDM). The other was the ramification of MCAS, named micro-column-array and sintered-copper compound structure (MSCS), which was fabricated with sintered method on micro-column array structure. Considering the wall superheat and critical heat flux (CHF), comparisons were made between them. The results show that both MCAS and MSCS can enhance the boiling heat transfer. It is also found that the enhanced boiling heat transfer ability of MSCS is changed obviously while the porosity of the sintered copper layer is changed.