利用f的Berezin变换,给出了单位球上Bergman空间上的Toeplitz算子有界及紧的充要条件,即:设f∈BMO1(B)。则Tf在L^2a(B)上有界当且仅当f有界;Tf在L^2a(B)上是紧的当且仅当f(z)→0(z-δB)。
The sufficiency and necessary conditions are given for the boundedness or compactness for the Toeplitz operator Tf on the Bergman space of the unit ball by using the Berezin transform of f, i.e. : Assume f BMO1 (B), then Tf is bounded on L2a (B) if and only iff is bounded ; Tf is compact on L^2a (B) if and only iff(z) →0(z→δB) .