我们认为半是线性热方程与全球性,包含坡度的 Lipschitz 非线性在 ℝ n 的一个围住的领域称为。在这篇论文,我们获得近似可控制性的费用的明确的界限,即,需要近似控制系统的控制的最小的标准。我们使用了的方法联合全球 Carleman 估计,近似可控制性和 Schauder 的变化途径修理了点定理。
We consider the semilinear heat equation with globally Lipschitz non-linearity involving gradient terms in a bounded domain of R^n. In this paper, we obtain explicit bounds of the cost of approximate controllability, i.e., of the minimal norm of a control needed to control the system approximately. The methods we used combine global Carleman estimates, the variational approach to approximate controllability and Schauder's fixed point theorem.