以Flory—Huggins理论为基础,详细推导了聚合物-溶剂-非溶剂三元聚合物成膜体系的双节线、旋节线和临界点求解方程,提供了方程的求解方法.根据此理论和方法,分别求解了聚合物杂萘联苯聚芳醚砜酮、杂萘联苯聚芳醚砜和杂萘联苯聚芳醚酮与H20及NMP组成的三元体系在25℃时的相分离曲线、将计算结果与实验测定的浊点数据进行比较,分别优化校正了溶剂NMP与聚合物PPES、PPEK和PPESK之间的相互作用参数g23.提出二元Flory—Huggins相互作用参数值随温度变化的一般关系.并据此关系,以25℃时的相互作用参数为基准求解PPES/PPEK/PPESK—NMP—H2O三元体系在50℃和75℃时的相图,计算结果与浊点实验数据相吻合.
Based on the Flory- Huggins theory, the binodal, spinodal and critical point equations for polymersolvent - nonsolvent system are derived in detail. Some simple solving methods to the equations are given. According to these equations and methods, the phase separation curves of PPESK, PPES and PPEK - NMP - H2O ternary systems at 25℃ are obtained respectively. Comparing the calculated binodal with the experimental cloud point, the binary interaction parameter between solvent NMP and polymer PPES, PPEK or PPESK are adjusted. A general relation between the binary Flory - Huggins interaction parameters with temperature is proposed. Using this relation, based on the interaction parameters at 25 ℃, the phase diagram of PPES/PPEK/PPESK - NMP - H2O at 50 and 75℃ are obtained, the calculated binordal curves are fit well with the experimental cloud point.