位置:成果数据库 > 期刊 > 期刊详情页
遗忘遗传算法及其在信用评分中的应用
  • ISSN号:2095-9389
  • 期刊名称:《工程科学学报》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京邮电大学智能通信软件与多媒体北京市重点实验室,北京100876
  • 相关基金:国家自然科学基金资助项目(60872051); 中央高校基本科研业务费专项资金资助项目(2009RC0203); 北京市教育委员会共建项目
中文摘要:

为解决局部最优问题,将遗忘机制引入传统遗传算法中,提出了一种改进的遗忘遗传算法,给出了一种遗忘算子及其遗忘概率,通过在遗传过程中遗忘某些基因,增加了算法的搜索空间,使算法跳出局部最优,从而最大限度地避免早熟收敛.将该算法用于不同欠费率下的电信客户初始信用评分,找到信用权重的优化解,较好地解决了对高欠费率群体进行信用评分时,信用权重的适应值偏低的问题.实验结果表明所提算法有效可行.与标准遗传算法相比,本文所提算法可以获得更高质量的解.

英文摘要:

Based on the forgetting strategy,an improved genetic algorithm was proposed to solve the problem of local optimization,and a forgetting operator as well as its forgetting probability was given.For the search space was increased by forgetting some genes during the period of inheritance,the algorithm can break away from local optimization and avoid the premature convergence to the greatest extent.By using the algorithm to deal with the credit scoring of telecom customers for different arrears rates,the optimum solution of credit weights in the case of high rate of arrears was found,so it solves the problem that the fitness of credit weights is low for the credit scoring of telecom customers in high arrears rates.Experimental results demonstrate that the algorithm is effective and feasible.Compared with the standard genetic algorithm,the proposed algorithm can obtain better quality results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《工程科学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:北京科技大学
  • 主编:张欣欣
  • 地址:北京市海淀区学院路30号
  • 邮编:100083
  • 邮箱:xuebaozr@ustb.edu.cn
  • 电话:010-62332875
  • 国际标准刊号:ISSN:2095-9389
  • 国内统一刊号:ISSN:10-1297/TF
  • 邮发代号:82-303
  • 获奖情况:
  • 首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,全国高等学校自然科学学报系统优秀学报评比一等奖,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:392