位置:成果数据库 > 期刊 > 期刊详情页
基于BP神经网络的协作过滤推荐算法
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京邮电大学网络与交换技术国家重点实验室,北京100876
  • 相关基金:国家高技术研究发展计划项目(2007CB307100);国家自然科学基金项目(60872051);国家科技支撑计划重大项目(2006BAH02A11);北京市教委产学研项目(zh100130525)
中文摘要:

研究、探讨了协同推荐问题,提出了一种基于两层面的多个后向传播(BP)神经网络的协作过滤推荐算法(TMNN-CFRA).两层面的多个BP神经网络协同工作,高层面BP网反向误差传播直至低层面多个人工神经网络(ANN)进行网络权值修正,以此为基础,借助用户评价等特征前向给出项目推荐.标准评测集Movielens上的实验评测表明了TMNN-CFRA的可行性和有效性.

英文摘要:

A novel two-level multiple neural networks-based collaborative filtering recommendation algorithm (TMNN-CFA) for rating prediction is presented. By cooperating the multiple back propaga- tion (BP) networks together, the higher layer neural network propagates conversely the output deviation until to the lower layer neural networks to amend the network weights and based on which, item recommendation is accomplished in the forward process of two layers networks relying on the factors such as ratings, etc. Experiment results on the standard Movielens show that TMNN-CFA method is effective and feasible for item recommendation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684